

Subscriber access provided by ISTANBUL TEKNIK UNIV

# **Formyl Fusarochromanone and Diacetyl Fusarochromanone, Two** New Metabolites of Fusarium equiseti

Weiping Xie, Chester J. Mirocha, and Yechun Wen

J. Nat. Prod., 1991, 54 (4), 1165-1167• DOI: 10.1021/np50076a048 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

## More About This Article

The permalink http://dx.doi.org/10.1021/np50076a048 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article



Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

### FORMYL FUSAROCHROMANONE AND DIACETYL FUSAROCHROMANONE, TWO NEW METABOLITES OF FUSARIUM EQUISETI

#### WEIPING XIE, CHESTER J. MIROCHA,\* and YECHUN WEN

Department of Plant Pathology. University of Minnesota, St. Paul, Minnesota 55108

ABSTRACT.—Two new chromone derivatives, 2,2-dimethyl-5-amino-6-(3'-N-formyl-4'-0-hydroxylbutyryl)-4-chromone [3] and 2,2-dimethyl-5-amino-6-(3'-N-acetyl-4'-0-acetylbutyryl)-4-chromone [4], were isolated from the rice culture of *Fusarium equiseti*. Their structures were deduced from chemical and spectral data.

The chromone derivative, fusarochromanone [1], has been found in cultures of Fusarium equiseti (Corda) Sacc. (previously identified as Fusarium roseum graminearum) (1-4) and chicken feed samples (1). This mycotoxin causes tibia dyschondroplasia, a common bone disease in chicks (2,5) and reduced hatchability of fertile chicken eggs (2) under experimental conditions. In a previous report (3), we described the isolation and identification of a monoacetate 2 of fusarochromanone from the rice culture of F. equiseti. Further fractionation of the crude extract allowed us to isolate a minor metabolite 3 as a vellow oil from polar fractions and another metabolite 4 as needle-shaped colorless crystals from nonpolar fractions. Both compounds exhibit blue fluorescence under uv.

Eims of 3 yielded an  $[M]^+$  at m/z 320 and  $[M - H_2O]^+$  at m/z 302 indicating the presence of an -OH group. Acetylation of 3 yielded a monoacetate 5 with an  $[M]^+$  at m/z 362 in eims, which further supported the presence of an

-OH group. Fabms of 3 yielded an  $[M + H]^+$  at m/z 321 and  $[M + Na]^+$  at m/z 343; negative cims of **3** yielded  $[M]^{-}$  at m/z 320, further supporting the mol wt as 320 amu. Hreims of 3 vielded an {M}<sup>+</sup> at m/z 320.1355 (calcd 320.1372 for a molecular formula of  $C_{16}H_{20}N_2O_5$ , which was compatible with 8 double bond equivalents). Eims of **3** was very similar to those of **1** and **2** (3), indicating closely related structures. Mass measurement of fragments at m/z 275.1167 (calcd 275.1158 for  $C_{15}H_{17}NO_4$  and m/z 257.1034 (calcd 257.1051 for C15H15NO3) suggested structures 6 and 7. A signal at  $\delta$  8.14 (1H, d, J = 1.6) in the <sup>1</sup>H-nmr spectrum of 3 indicated the presence of an -NHCHO group. Hydrolysis of 3 in HCl yielded 1, which was confirmed by tlc and eims. Compound 3 was obtained by reacting 1 with HCO<sub>2</sub>H and the structure was confirmed by eims, fabms, <sup>1</sup>H-nmr, and tlc. Therefore, the structure of 3 was established as 2,2-dimethyl-5-amino-6-(3'-N-formyl-4'-0-





hydroxylbutyryl)-4-chromone or 3'-N-formyl fusarochromanone.

The eims of 4 yielded an  $[M]^+$  at m/z376. Fabres yielded an  $[M + H]^+$  at m/z377 and  $[M + Na]^+$  at m/z 399, and negative cims yielded an  $[M]^-$  at m/z376. The hreims indicated a molecular ion at m/z 376.1661 (calcd 376.1634 for  $C_{19}H_{24}N_2O_6$ ). Signals at  $\delta$  4.14 (1H, dd, J = 5.3, 11 and 4.32 (1H, dd, I = 6.1, 11 in the <sup>1</sup>H-nmr spectrum of 4 indicated a downfield shift, compared with 3.70 (2H, m) in the previously reported spectrum of 2(3). This suggested acetylation of the -OH at C-4'. An absorption band at 1734  $cm^{-1}$  in the ir spectrum also supported the presence of acetyl groups. Hydrolysis of 4 in HCl yielded 1 and 2, confirmed by tlc and eims. Acetylation of 2 with Nacetylimidazole yielded 4, which was confirmed by tlc and eims. Therefore, the structure of 4 was determined as 2,2dimethyl-5-amino-6-(3'-N-acetyl-4'-0acetylbutyryl)-4-chromone or 3'-N-acetyl-4'-O-acetyl fusarochromanone.

#### EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURE. Eims were obtained on a VG 7070 EQ operating at 70 eV. Thioglycerol was used as matrix in fabms and CH<sub>4</sub> was used as reactant gas in cims. <sup>1</sup>H-nmr spectra were obtained on a Bruker AC-200 at 200 MHz; chemical shifts were given in  $\delta$ (ppm) with TMS as an internal standard. Ir spectra were recorded on a Nicolet 510P FT-IR. Uv spectra were recorded on Beckman DB-GT in MeOH. Analytical tlc was performed on Machery polygram sil G/UV $_{254}$ . Preparative tlc plates were made from Aldrich tlc grade Si gel.

COLLECTION AND ISOLATION PROCE-DURE. - F. equiseti was isolated from oat kernal collected in Fairbanks, Alaska and deposited in our department as Alaska 2-2. Identification was made by Dr. Paul Nelson (Department of Plant Pathology, The Pennsylvania State University). The isolate was grown on autoclaved rice with 60% H<sub>2</sub>O for 4 weeks at room temperature. The dried, powdered rice culture (3 kg) was extracted with 90% aqueous MeOH. The extract was concentrated under reduced pressure, defarted with petroleum ether, and partitioned with CH<sub>2</sub>Cl<sub>2</sub>. The CH<sub>2</sub>Cl<sub>2</sub> layer was concentrated and fractionated on a Florisil column. Elution was with CHCl<sub>3</sub>-MeOH (19:1) followed by CHCl<sub>3</sub>-MeOH (9:1). Fractions containing 3 by tlc were combined and further purified by preparative tlc in CHCl<sub>3</sub>-MeOH (9:1); combined fractions containing 4 were purified by tlc in EtOAc-Me<sub>2</sub>CO (9:1). The tlc spots and bands were visualized by long wavelength uv. Compound 3 (3 mg) was obtained as a vellow oil, and 4 (12 mg) wa obtained as needle-shaped colorless crystals in Me<sub>2</sub>CO.

2,2-DIMETHYL-5-AMINO-6-(3'-N-FORMYL-4'-HYDROXYLBUTYRYL)-4-CHROMONE [**3**].— Ir  $\lambda$  max (film) 3399, 3287, 2932, 2864, 1724, 1682, 1657, 1599, 1568, 1560, 1496, 1466, 1388, 1373, 1277, 1174, 1159, 1109, 893; uv (nm MeOH) 278, 248, 214; <sup>1</sup>H nmr (CDCl<sub>3</sub>, 200 MHz)  $\delta$  1.45 (6H, s, H-11 and H-12), 2.70 (2H, s, H-3), 3.12 (1H, dd, J = 5.9, 16.3 Hz, Ha-2'), 3.34 (1H, dd, J = 6.4, 16.3 Hz, Hb-2'), 3.79 (2H, d, J = 4.2 Hz, H-4'), 4.26–4.39 (1H, m, H-3'), 6.08 (1H, d, J = 9.1 Hz, H-8), 6.57 (2H, d, J = 6.0 Hz, NH-3'), 7.89 (1H, d, J = 9.1 Hz, H-7), 8.14 (1H, d, J = 1.6 Hz, CHO), 9.50 (2H, s, ArNH).

2,2-Dimethyl-5-amino-6-(3'-N-Acetyl-4'-0-acetylbutyryl)-4-chromone [**4**].—Ir λ max (film) 3395, 3285, 2298, 2932, 2856, 1734, 1662, 1653, 1595, 1560, 1498, 1466, 1375, 1319, 1278, 991, 893; uv (nm MeOH) 278, 248, 214; <sup>1</sup>H nmr (CDCl<sub>3</sub>, 200 MHz) δ 1.44 (6H, s, H-11 and H-12), 1.97 (3H, s, NHAc), 2.04 (3H, s, OAc), 2.69 (2H, s, H-3), 3.01 (1H, dd, J = 6.2, 16 Hz, Ha-2'), 3.25 (1H, dd, J = 5.7, 16 Hz, Hb-2'), 4.14 (1H, dd, J = 5.3, 11 Hz, Ha-4'), 4.32 (1H, dd, J = 6.1, 11 Hz, Hb-4'), 4.48 (1H, m, H-3'), 6.02 (1H, d, J = 8.9 Hz, H-8), 6.39 (1H, d, J = 8.3 Hz, NHAc), 7.82 (1H, d, J = 8.9 Hz, H-7), 9.34– 9.60 (2H, b, ArNH).

#### ACKNOWLEDGMENTS

Published as paper No. 18,801 of the contribution series of the Minnesota Agricultural Experiment Station based on research conducted under Project 22-34H, supported by HATCH funds.

#### LITERATURE CITED

- 1. P. Krogh, D.H. Christensen, B. Hald, B. Harlou, C. Larsen, E.J. Pedersen, and U. Thrane, *Appl. Environ. Microbiol.*, **55**, 3184 (1989).
- Y.W. Lee, C.J. Mirocha, D.J. Shroeder, and M.W. Walser, Appl. Environ. Microbiol., 50, 102 (1985).
- W. Xie, C.J. Mirocha, R.J. Pawlosky, Y. Wen, and X. Xu, Appl. Environ. Microbiol.. 55, 794 (1989).
- S.V. Pathre, B.G. William, Y.W. Lee, and C.J. Mirocha, *Can. J. Chem.*, **64**, 308 (1986).
- M. Cook, W. Wu, and Q. Chu, Poultry Digest. 49, 446 (1989).

Received 25 February 1991